Prarthana Patil and John Szymanski are co-authors on our recent article in Advanced Materials Technologies entitled “Defined Micropatterning of ECM Protein Adhesive Sites on Alginate Microfibers for Engineering Highly Anisotropic Muscle Cell Bundles.” This article describes a new technique to selectively pattern ECM protein adhesive sites on alginate microfibers to engineer muscle tissue bundles. Unique is the ability of the ribbon-like microfibers to wrap around the muscle cells and form a basal lamina like structure.
“Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle”
Rebecca Duffy and Yan Sun are co-authors on our recent article in Annals of Biomedical Engineering entitled “Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle.” This article describes how the type of ECM protein and its geometric patterning can impact the differentiation of murine and human myoblasts into aligned skeletal muscle myotubes.
“Biological Soft Robotics”
Adam is the author of a recent article in the Annual Review of Biomedical Engineering entitled “Biological Soft Robotics.”
This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.
Recent media covererage of FRESH 3D Bioprinting
Our publication on FRESH 3D bioprinting in Science Advances, led by TJ Hinton and team, has been widely reported on. Here are links to recent articles and videos.
Please keep in mind that we are NOT yet printing functional human tissues, though that remains our goal and the FRESH printing process is an important step towards achieving that.
Articles
- CMU Press Release: Carnegie Mellon Researchers Hack Off-the-Shelf 3-D Printer Towards Rebuilding the Heart
- Bloomberg Business: This Professor Is Making Arteries With an Off-the-Shelf 3D Printer
- Science: 3D printing soft body parts: A hard problem that just got easier
- Live Science: Organs on Demand? 3D Printers Could Build Hearts, Arteries
- 3DPrint.com: Carnegie Mellon Researchers Hack & Refine Hardware to 3D Print Soft Tissue and Soon, Heart Muscle
- BBC News: Consumer 3D printer used to create human tissue (We are NOT printing human tissue)
- Hackaday: Printing Soft Body Tissue
- Nautilus: How Bioprinting Has Turned Frankenstein’s Mad Science Sane
Videos
Force TV: Could This Be The Future For Saving Injured Military Personnel?
Science Magazine: A 3D Printer for the Zombie Apocalypse: Brains, veins and hearts
Carnegie Mellon University: Soft Material Bioprinting
BBC News
“Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels”
TJ Hinton, Quentin Jallerat, Rachelle Palchesko, Joon Hyung Park, Martin Grodzicki, Hao-Jan Shue, Mohamed Ramadan, and Andrew Hudson are co-authors on our recent article in Science Advances entitled “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.” This article describes the 3D Bioprinting of alginate, collagen and fibrin in complex, biological structures including scaffolds based on the coronary artery, femur, brain and embryonic heart.
“Spontaneous Helical Structure Formation in Laminin Nanofibers”
John Szymanski and Mengchen Ba are co-first authors on our recent article in the Journal of Materials Chemistry B entitled “Spontaneous Helical Structure Formation in Laminin Nanofibers.” This article describes the use of surface-initiated assembly to engineer protein nanofibers of defined laminin compositions and the unique formation of a helical morphology that occurs for the highest purity laminin 111 networks.
“Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture”
Ivan Batalov is lead author on our recent review article in the Supplementary Issue on Stem Cell Biology in the journal Biomarker Insights entitled “Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture.” This article summarizes recent advances in cardiomyocyte differentiation techniques, with particular focus on monolayer-based methods that have improved efficiency and scalability.
Featured on Cover of the February 2015 issue of Nature Methods
Great job by John and Quentin! Our research on Patterning on Topography (PoT) is the cover image of the February 2015 issue of Nature Methods. Read the article, “Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces.”
“In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates”
Congratulations to Rachelle and co-authors on our recent publication in Scientific Reports titled “In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates.” This article describes our work to use matrix composition and stiffness to maintain corneal endothelial cell phenotype during in vitro expansion.
“Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces”
Yan, Quentin and John are co-first authors on our recent publication in Nature Methods titled “Conformal nanopatterning of extracellular matrix proteins on topographically complex surfaces.”